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Quantitative structure-property relationship (QSPR) models are developed to predict mono-
mer reactivity ratios (log r12) in radical copolymerization with monomers M1 (styrene,
methyl methacrylate and acrylonitrile) and M2 (vinyl monomers). The quantum chemical
descriptors are calculated by the density functional theory (DFT) at B3LYP level of theory
with 6-31G(d) basis set. Stepwise multiple linear regression analysis and artificial neural net-
work (ANN) were used to generate Model S (monomer 1: styrene), Model MM (monomer 1:
methyl methacrylate) and Model A (monomer 1: acrylonitrile). Simulation results show that
the predicted log r12 values are in good agreement with the experimental data, with the test
sets possessing correlation coefficients of 0.972 for Model S, 0.933 for Model MM and 0.946
for Model A.
Keywords: Artificial neural network; Density functional theory; Radical copolymerization;
Monomer reactivity ratios; QSPR; Quantum chemical.

When a vinyl monomer M1 is copolymerized with a second monomer M2,
the relationship between the composition of the initially formed copoly-
mer and the initial monomer mixture is given by1

Rp = Rm(r12Rm + 1)/(r21 + Rm) (1)

where Rm is equal to [M1]/[M2] in the monomer mixture and Rp is equal to
[M1]/[M2] in the polymer formed, r12 and r21 are the monomer reactivity ra-
tios (known as reactivity ratios).

The monomer reactivity ratios, r12 and r21, for any monomer pair are the
ratios of the rate constants of the different propagation reactions
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~M1
• + M1 → ~M2

• k11

~M1
• + M2 → ~M2

• k12

~M2
• + M1 → ~M1

• k21

~M2
• + M2 → ~M2

• k22

with r12 = k11/k12, r21 = k22/k21, where ~M• represents a polymer chain end-
ing with a radical derived from monomer M.

One of the most important aspects of the study of copolymerization is
the relationship between the composition of the monomer feed and that of
the resulting copolymer. It would be extremely useful to predict the values
of r12 and r21 and hence the composition of any copolymer produced from
any pair of monomers at any concentration ratios2. The monomer reactiv-
ity ratios can be predicted using the empirical Q–e scheme2–5 or the revised
patterns scheme2,4,5. However, these schemes are limited as the parameter
values (Q, e, u, v) are not known.

The development of reliable quantitative structure–property relationship
(QSPR) models for prediction of the monomer reactivity ratios is of real in-
terest, particularly for new monomers for which experimental investigation
would be expensive. The QSPR approach can conserve resources and accel-
erate the process of development of new polymers6.

In principle, quantum chemical theory can provide precise quantita-
tive descriptors of molecular structures and their chemical properties6.
The goal of this paper is to produce robust QSPR models which could pre-
dict the monomer reactivity ratios log r12 in radical copolymerization
with monomers M1 (styrene, methyl methacrylate and acrylonitrile) and
M2 (C1H2=C2H·X and C1H2=C2X·Y). The quantum chemical descriptors cal-
culated by the DFT method are correlated with the monomer reactivity ra-
tios using the nonlinear artificial neural network (ANN) method.

MATERIALS AND METHODS

Table I shows three data sets for monomer reactivity ratios of radical
copolymerization of vinyl monomers with structures C1H2=C2H·X (or
C1H2=C2X·Y)7,8. Monomer 1 is styrene, methyl methacrylate and acrylo-
nitrile. Monomers 2 show a high degree of structural variety. For example,
the functionalities present in the side chains include aldehydes, nitriles,
ketones, halides, esters, aromatic rings, non-aromatic rings, etc. The loga-
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rithms of monomer reactivity ratios r12 are used because the spread of
the data sets is consistently even when log r12 is used instead of r12. More-
over, the logarithmic form of monomer reactivity ratios provides a more
convenient linear solution for the Q–e scheme2–5 and the revised patterns
scheme2,4,5.

All experimental data of monomer reactivity ratios (see Table I) were ran-
domly divided into a training set and a validation set. The training set was
used to build the QSPR model which was evaluated with the validation set.

All the model structures studied in this work were fully optimized by the
density functional theory (DFT) using Gaussian 03 program9 at B3LYP level
of theory with 6-31G(d) basis set10,11, in order to obtain some quantum
chemical descriptors to fit monomer reactivity ratios. Frequency calcula-
tions were carried out with the optimized geometries to assure that they
were indeed stationary minima at the same level and basis set. Nineteen
descriptors were calculated – the Mulliken and atomic polar tensor (APT)12

charges of C1, C2 and C3 (attached to C2 directly) (q
MC 1 , q

MC 2 , q
MC 3 , q

AC 1 ,
q

AC 2 and q
AC 3 ), mean positive APT atomic charge (qM

+), total negative
APT atomic charge (qT

–), mean negative Mulliken atomic charge with
hydrogens summed into heavy atoms (qM

–), total dipole moment (µ), mean
quadrupole moment (Q), mean octapole moment (ω), energies of the high-
est occupied molecular orbital (EHOMO) and the lowest unoccupied molecu-
lar orbital (ELUMO), LUMO and HOMO orbital energy difference (∆Eg =
ELUMO – EHOMO)13,14.

The mean quadrupole moment is calculated using Eq. (2)

Q
Q Q Q

=
+ +XX YY ZZ

3
(2)

where QXX, QYY and QZZ are the quadrupole moment tensors in the X-, Y-,
and Z-coordinates, respectively.

The mean octapole moment is defined as

ω
ω ω ω

=
+ +| | | | | |XX YY ZZ

3
. (3)

Similarly, ωXX, ωYY and ωZZ are the octapole moment tensors in the X-, Y-
and Z-coordinates, respectively.

In addition, four descriptors (RTM, RMA, R
ωC 2 and RµH) are defined as fol-

lows.
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TABLE I
Experimental and calculated monomer reactivity ratios (log r12)a

Monomer 1a Monomer 2 log r12(exp) log r12(calc) ∆log r12
b

Model S (monomer1:styren) Training set

S Acrylaldehyde –0.658 –0.717 0.060

S Methylacrylaldehyde –0.699 –0.558 –0.141

S N-(Hydroxymethyl)acrylamide 0.190 0.200 –0.010

S Benzyl acrylate –0.284 –0.440 0.156

S Ethyl acrylate –0.102 –0.218 0.116

S Methyl acrylate –0.125 –0.140 0.015

S Acryloyl chloride –1.000 –0.973 –0.027

S Allyl acetate 1.875 1.832 0.043

S Diallyl phthalate 1.362 1.322 0.040

S Ethene 1.176 1.158 0.018

S Isopropenyl methyl ketone –0.357 –0.446 0.089

S Benzyl methacrylate –0.222 –0.301 0.079

S 2-Chloroethyl methacrylate –0.456 –0.511 0.055

S Glycidyl methacrylate –0.347 –0.334 –0.013

S Methyl methacrylate –0.301 –0.297 –0.004

S Phenyl methacrylate –0.602 –0.533 –0.069

S 2-Vinylpyridine –0.268 –0.278 0.011

S 4-Vinylpyridine –0.284 –0.375 0.091

S α-Methylstyrene 0.041 0.061 –0.020

S 4-Methylstyrene –0.050 –0.056 0.006

S Vinyl chloroacetate 1.477 1.508 –0.030

S Vinyl chloride 1.301 1.233 0.068

Model S (monomer 1:styrene) Test set

S Acrylamide 0.079 –0.017 0.096

S Butyl acrylate –0.102 –0.381 0.278

S Acrylonitrile –0.420 –0.518 0.098

S Allyl chloride 1.558 1.781 –0.223

S Isoprene –0.337 –0.027 –0.310
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TABLE I
(Continued)

Monomer 1a Monomer 2 log r12(exp) log r12(calc) ∆log r12
b

S Isobutyl methacrylate –0.268 –0.332 0.065

S 2-Hydroxyethyl methacrylate –0.276 –0.037 –0.239

S Methacrylonitrile –0.420 –0.325 –0.095

S 4-Acetoxy styrene –0.051 –0.047 –0.003

S Vinyl benzoate 1.519 1.480 0.038

S Vinylidene chloride 0.255 0.414 –0.159

Model MM (monomer 1:methyl methacrylate) Training set

MM Methylacrylaldehyde –1.000 –0.5365 –0.464

MM Benzyl acrylate 0.348 0.0303 0.318

MM Methyl acrylate 0.332 0.3821 –0.050

MM Allyl acetate 1.996 1.9219 0.074

MM Acrylamide 0.447 0.1883 0.259

MM Butyl acrylate 0.301 0.2159 0.085

MM Acrylonitrile 0.121 0.1309 –0.010

MM Allyl chloride 1.558 1.5251 0.033

MM Acryloyl chloride –0.347 –0.5263 0.179

MM Benzyl methacrylate –0.071 –0.1097 0.039

MM Glycidyl methacrylate –0.125 0.1879 –0.313

MM Methacrylonitrile –0.125 –0.2378 0.113

MM Styrene –0.337 –0.5798 0.243

MM Diallyl phthalate 1.362 1.3417 0.020

MM Isobutyl methacrylate –0.036 –0.0506 0.015

MM 2-Vinylpyridine –0.420 –0.4094 –0.011

MM α-Methylstyrene –0.284 –0.2139 –0.070

MM 4-Vinylpyridine –0.260 –0.3302 0.070

MM Vinylidene chloride 0.342 0.2879 0.054

MM Vinyl chloride 0.954 0.9459 0.008

Model MM (monomer 1:methyl methacrylate) Test set

MM Isoprene –0.602 –0.0778 –0.524

MM 2-Chloroethyl methacrylate 0.063 –0.0321 0.095
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TABLE I
(Continued)

Monomer 1a Monomer 2 log r12(exp) log r12(calc) ∆log r12
b

MM Phenyl methacrylate –0.252 –0.4535 0.202

MM 4-Methylstyrene –0.462 –0.301 –0.161

MM Ethyl acrylate 0.301 0.3703 –0.069

MM 2-Hydroxyethyl methacrylate –0.125 0.1504 –0.275

MM Acrylaldehyde 0.079 0.2088 –0.130

MM Vinyl benzoate 1.307 1.6657 –0.359

Model A (monomer 1:acrylonitrile) Training set

A Acrylaldehyde –0.222 –0.172 –0.050

A Benzyl acrylate 0.176 –0.155 0.331

A Butyl acrylate 0.079 0.070 0.009

A Acryloyl chloride 0.079 0.023 0.056

A Allyl acetate 0.818 0.644 0.174

A Allyl chloride 0.431 0.630 –0.199

A Ethene 0.845 0.760 0.085

A 2-Chloroethyl methacrylate –0.854 –0.840 –0.014

A Glycidyl methacrylate –0.854 –0.801 –0.053

A 2-Hydroxyethyl methacrylate –0.699 –0.693 –0.006

A Methacrylonitrile –0.367 –0.487 0.120

A Isopropenyl methyl ketone –0.420 –0.617 0.197

A 2-Vinylpyridine –1.097 –1.257 0.160

A 4-Vinylpyridine –1.000 –1.020 0.020

A Vinylidene chloride –0.222 –0.229 0.007

A Isoprene –1.523 –1.419 –0.104

A Methylacrylaldehyde –0.824 –0.515 –0.309

A Acrylamide –0.046 0.013 –0.059

A Ethyl acrylate –0.155 0.010 –0.165

A Methyl acrylate –0.071 –0.179 0.108
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TABLE I
(Continued)

Monomer 1a Monomer 2 log r12(exp) log r12(calc) ∆log r12
b

Model A (monomer 1:acrylonitrile) Test set

A Benzyl methacrylate –0.699 –0.742 0.043

A Diallyl phthalate 0.544 0.767 –0.223

A Methyl methacrylate –0.854 –0.869 0.015

A Phenyl methacrylate –0.444 –0.725 0.281

A 4-Acetoxystyrene –1.155 –1.476 0.321

A 4-Methylstyrene –1.301 –1.507 0.206

A Styrene –1.398 –1.505 0.107

A Vinyl chloride 0.477 0.014 0.463

A α-Methylstyrene –1.398 –1.481 0.083

A N-(Hydroxymethyl)acrylamide –0.097 0.418 –0.515

Model A (monomer 1:acrylonitrile) Prediction set

A 3-Bromostyrene – –1.503 –

A 3-Chlorostyrene – –1.174 –

A 3-Nitrostyrene – 0.582 –

A 4-Bromostyrene – –1.504 –

A 4-Cyanostyrene – 0.664 –

A 4-Methoxystyrene – –1.503 –

A 2,3,4,5,6-Pentachlorostyrene – –1.172 –

A 4-Fluoro-2-(trifluoromethyl)styrene – –1.490 –

A 2,6-Dichlorostyrene – –1.327 –

A 2-Bromo-4-(trifluoromethyl)styrene – –1.394 –

A 4-Isopropylstyrene – –1.517 –

a S, styrene; MM, methyl methacrylate; A, acrylonitrile. b ∆log r12 = log r12(exp) – log r12(calc).



RTM =
q

q

−

MC 3

(4)

RMA =
q

q
MC

M

3

+
(5)

R
qω

ω
C

MC 2

2 = (6)

RµH =
µ

EHOMO

(7)

Stepwise multiple linear regression (MLR) analysis15 has proved to be an
extremely useful computational technique in seeking an optimum linear
combination of variables from the subsets of the N variables. The technique
only adds one parameter to a model at a time and always in the order from
the most significant to the least significant. Thus, stepwise MLR method
was used to select their respective best subsets of descriptors for Model S
(monomer 1: styrene), Model MM (monomer 1: methyl methacrylate) and
Model A (monomer 1: acrylonitrile) from the 19 descriptors mentioned
above. The subset size was increased until addition of another descriptor
did not significantly improve the root-mean-square (rms) error of the esti-
mate. Furthermore, a variance inflation factor (VIF) was calculated to see if
multicollinearities exist between the descriptors in a model. Models were
not accepted if they contained descriptors with VIFs over a value of 10. The
smallest subset of descriptors that did not compromise the rms error of the
estimate and VIF-test was identified as optimal.

All experimental data in Table I were divided into a training set and a test
set, respectively. In order to develop the respective artificial neural network
(ANN) models from the training sets, three-layer, fully connected, back-
propagation (BP) neural networks were adopted16. For each model, the
number of neurons of the input layer was equal to the molecular de-
scriptors taken from stepwise MLR analysis. The output layer contained one
neuron representing the reactivity ratios (log r12). The network geometry
(i.e. the number of hidden layers and the number of nodes in per hidden
layer) was optimized by the trial-and-error method with permission error
0.0001, momentum parameter 0.6 and sigmoid parameter 0.9. The optimal
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number of hidden layers and the number of neurons in each hidden layer
were determined by varying the number of hidden layers (from 1 to 2) and
the number of hidden neurons (from 1 to 4) and observing rms errors. The
sums of rms errors of the training set and the test set were used to assess the
accuracy of a model. The rms error was defined as

rms =
( )f x

N
i i−∑ 2

(8)

where fi is the predicted value for the i-th compound, xi is the observed
value for the i-th compound, and N is the total number of compounds in
the data set. The number of hidden layers and the number of nodes in per
hidden layer were increased successfully until improvement was observed
for that model.

The ANN architecture is described with the code: Nin–[Nh1–Nh2]e–Nout,
where Nin and Nout are the element numbers of input and output nodes, re-
spectively; Nh1 and Nh2 are numbers of nodes in the first and second hid-
den, respectively; e is the number of hidden layers.

RESULTS AND DISCUSSION

Correlating 19 descriptors and the three sets of monomer reactivity ratios
using stepwise multiple linear regression (MLR) analysis15, three MLR mod-
els were obtained – Model S (monomer 1: styrene), Model MM (monomer 1:
methyl methacrylate) and Model A (monomer 1: acrylonitrile).

log r12 = 1.064 + 0.011Q + 20.276ELUMO – 1.743q
MC 3 – 0.537qT

– (9)

n = 33, R = 0.952, se = 0.253, F = 67.073 (MLR Model S)

log r12 = 0.761 + 13.776ELUMO – 1.696qM
– + 0.020RTM – 0.201RMA (10)

n = 28, R = 0.936, se = 0.264, F = 40.725 (MLR Model MM)

log r12 = –5.668 – 0.028ω – 0.003R
ωC 2 – 0.077RµH + 21.585∆E (11)

n = 30, R = 0.925, se = 0.291, F = 32.270 (MLR Model A)

where R is correlation coefficient, se is the standard error, F is the Fischer
ratio, and n is the number of samples. The characteristics of descriptors
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appearing in each model are shown in Table II and the definitions of
descriptors are described in Table III.

All the subsets of descriptors selected by stepwise MLR method were then
fed to artificial neural network (ANN) as input vectors15. The optimal con-
ditions of neural networks were obtained by adjusting parameters by the
trial-and-error method. The architectures of the final optimum ANNs are
4–[4]1–1 for Model S (monomer 1: styrene), 4–[4–2]2–1 for Model MM
(monomer 1: methyl methacrylate) and 4–[4]1–1 for Model A (monomer 1:
acrylonitrile).

Statistical parameters for ANN Model S are
n = 22, R = 0.997, rms = 0.068 (training set),
n = 11, R = 0.972, rms = 0.176 (test set).

Statistical parameters for ANN Model MM are
n = 20, R = 0.971, rms = 0.175 (training set),
n = 8, R = 0.933, rms = 0.268 (test set).
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TABLE II
The characteristics of descriptors appearing in MLR modelsa

Modela Descriptor Coefficient Std. error Sig.-test t-test VIF

Model S constant 1.064 0.141 0.000 7.541 –

Q 0.011 0.004 0.007 2.927 2.408

ELUMO 20.276 2.410 0.000 8.413 1.209

qMC –1.743 0.144 0.000 –12.134 1.090

qT
– –0.537 0.078 0.000 –6.859 2.630

Model MM constant 0.761 0.133 0.000 5.829 –

ELUMO 13.7761 3.063 0.000 4.719 1.302

qM
– –1.718 0.432 0.001 –4.125 1.282

RTM 0.020 0.005 0.000 4.263 1.153

RMA –0.201 0.027 0.000 –7.627 1.171

Model A constant –5.668 0.513 0.000 –11.042 –

ω –0.028 0.010 0.011 –2.763 1.475

RωC –0.003 0.001 0.000 –6.124 1.201

RµH –0.077 0.015 0.000 –5.249 1.353

∆Eg 21.585 2.166 0.000 9.966 1.099

a S, styrene; MM, methyl methacrylate; A, acrylonitrile.

3

2



Statistical parameters for ANN Model A are
n = 20, R = 0.972, rms = 0.146 (training set),
n = 10, R = 0.946, rms = 0.278 (test set).

The results calculated by each ANN method are listed in Table I and de-
picted in Fig. 1, respectively. They indicate that all the experimental mono-
mer reactivity ratios values are close to the predicted values. Thus the three
ANN models are useful for predicting monomer reactivity ratios in binary
copolymerization with monomers M1 (styrene, methyl methacrylate and
acrylonitrile). Furthermore, the ANN Model A is used to predict the reactiv-
ity ratios for 11 monomer pairs (monomer 1: acrylonitrile, monomer 2:
11 styrenes) whose experimental values are not available. The prediction
values are also listed in Table I.

Table II shows all the Sig.-test values are lower than 0.05, demonstrating
that these descriptors all are significant. In addition, all the VIF (variance
inflation factor) values are lower than 10, which show that multicollinear-
ities do not exist in the descriptors in each model. The t-test measures the
statistical significance of the regression coefficients. The higher t-test values
correspond to the relatively more significant regression coefficients.

Collect. Czech. Chem. Commun. 2009, Vol. 74, No. 9, pp. 1279–1294

Radical Copolymerization of Vinyl Monomers 1289

TABLE III
The definitions of descriptors

Number Descriptor Definition Unit

1 Q mean molecular quadrupole moment D Å

2 ELUMO energy of the lowest unoccupied molecular orbital a.u.

3 qMC Mulliken charge on C3 a.u.

4 qT
– total negative APT atomic charge a.u.

5 qM
– mean negative Mulliken atomic charge with

hydrogens summed into heavy atoms
a.u.

6 RTM ratio qT
–/qMC –

7 RMA
ratio qMC /qM (means positive APT atomic charge
in a molecule

–

8 ω mean molecular octapole moment D Å2

9 RωC ratio ω/qMC (Mulliken charge on C2) D Å2 a.u.–1

10 RµH
ratio µ (the total dipole moment)/EHOMO (the energy
of the highest occupied molecular orbital)

D a.u.–1

11 ∆Eg LUMO and HOMO orbital energy gap a.u.

3

3

3
+

2 2
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FIG. 1
Plots of the experimental versus calculated monomer reactivity ratios (log r12); monomer 1:
styrene (a), methyl methacrylate (b) and acrylonitrile (c)

a

b

c



According to the Q–e scheme2–5, the rate constant for a radical monomer
reaction, for example, for the reaction of a radical M1 with a monomer M2,
can be written as

k P Q e e12 1 2 1 2= −exp( ) (12)

and

log log logk P e e Q12 1 1 2 2= − + (13)

where P1 and Q2 are measures of the resonance stabilization of M1 and M2,
respectively; e1 and e2 are measures of their respective polarities.

By subtracting the corresponding expression for k11 from both sides of
the equations, the parallel equations for the monomer reactivity ratio r12
are obtained

r
P

Q
e e e12

1

2
1 1 2= − −exp[ ( )] . (14)

Thus

log log logr P Q e e e12 1 2 1 2 1
2= − + − . (15)

In this paper, monomer 1 is styrene, methyl methacrylate and acrylo-
nitrile, i.e. P1 and e1 are constant. Hence, the monomer reactivity ratios r12
depend only on the parameters Q2 and e2. The parameter log r12 increases
with increasing polarity or/and decreasing general reactivity of monomer 2.

The negative Q can reflect the degree of the asymmetry of spherical
charge distribution in the molecule. The decrease in Q value indicates the
increase in polarity of the molecule. Thus, the descriptor Q carries a nega-
tive coefficient in the Model S (see Table II). The correlation of the molecu-
lar ω with Q is negative. It is easy to understand why the descriptor ω bears
a positive coefficient in Model MM.

The total dipole moment is a measure of the asymmetry of molecular
charge distribution. It is also the most widely used quantity for description
of the polarity of a molecule17,18. Therefore, the ratio of µ and EHOMO, RµH,
correlates with the parameter log r12.

According to the frontier molecular orbital theory (FMO) of chemical re-
activity, the highest occupied molecular orbital (HOMO), the lowest unoc-
cupied molecular orbital (LUMO) and the energy gap (∆Eg) between LUMO
and HOMO play major roles in controlling many chemical reactions13,14.
The energy of the LUMO (ELUMO) is directly related to the electron affinity.
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It characterizes the susceptibility of the molecule toward attack by nucleo-
philes. A molecule with a smaller ELUMO value may be prone to formation
of a radical and resulting in a larger value of parameter Q2. Thus, there
are positive terms associated with descriptors ELUMO and ∆Eg in Model S,
Model MM and Model A (see Table II).

In Table II, six descriptors (q
MC 3 , qT

–, qM
–, RTM, RMA and R

ωC 2 ) correlate
with local electron densities or charges. By the classical chemical theory, all
chemical interactions are either electrostatic (polar) or orbital (covalent).
Electric charges in the molecule are obviously the driving force of electro-
static interactions. Indeed, it has been proven that local electron densities
or charges are important in many chemical reactions and for physico-
chemical properties of compounds, and can reflect the polarity of a mole-
cule6. The six descriptors therefore correlate also with the parameter log r12.

Despite many different factors affecting the monomer reactivity ratios
(log r12), the molecular structures of monomers are the main ones. These
descriptors based on the structural analysis of monomers express the im-
portant factors relating to monomer reactivity ratios. In addition, ANN is
a powerful chemometrics tool to make quantitative prediction. Therefore,
the ANN models based on the reasonable descriptors can accurately predict
the reactivity ratios.

According to transition state theory, the reaction rate constant k for a
given temperature T can be evaluated as

k = (κkBT/h) exp (–∆‡Go
a/RT) (16)

where ∆‡Go
a is the Gibbs free energy of activation, kB is the Boltzmann con-

stant, h is the Planck constant, κ is the tunneling correction, and R is the
gas constant. By using Eq. (16) for the rate constants k11 and k12, a more de-
tailed expression of the reactivity ratio log r12 is obtained (we assume that
the κ and T values are the same).

log r12 = ∆‡Go
12 – ∆‡Go

11 (17)

To use Eq. (17) to calculate the log r12 value of a monomer pair, one needs
to determine the Gibbs free energy of activation for the reaction of the
monomer with a radical. However, the reliable computational determina-
tion of a Gibbs free energy of activation is significantly more expensive
than that of a reaction energy19,20. Fortunately, the computation can be
simplified because there are excellent linear relationships between the acti-
vation energy and reaction energy20–22. Hence, if we consider monomer

Collect. Czech. Chem. Commun. 2009, Vol. 74, No. 9, pp. 1279–1294

1292 Yu X., Yu W., Yi, Wang:



pairs (monomer 1: styrene, methyl methacrylate and acrylonitrile), we may
obtain an alternative expression of the reactivity ratio log r12

log r12 = A∆Ga12 + C (18)

where ∆Ga12 is the Gibbs free energy of reaction, and A and C are empirical
constants to be determined by comparison to experimentally derived log r12
values.

Here we take the 20 monomer pairs in the training set of Model A (mono-
mer 1: acrylonitrile) (see Table I) as calculation example. According to the
terminal model, the Gibbs free energy of reaction ∆Ga12 can be calculated
with the propagation reaction

CH3CH(CN)• + M2 → CH3CH(CN)M2
•

where M2 represents 20 different monomers (i.e. monomer 2) (see Table I).
All optimizations and frequency calculations were carried out at the B3LYP
level of theory with 6-31G(d) basis set. In the end, we obtained a relationship
between the reactivity ratio log r12 and reaction energy ∆Ga12 (Hartrees)

log r12 = –0.186∆Ga12 + 48.250 (19)

with a correlation coefficient R = 0.639, which is lower than that of Eq. (11).
Equation (19) is only approximate. The reason may be that the reactivity of
a propagating radical is determined not only by the terminal unit but also
by the penultimate unit. Hence, it is necessary to develop these ANN mod-
els to predict the reactivity ratio log r12.

CONCLUSIONS

The monomer reactivity ratios (log r12) values of vinyl monomers in radical
copolymerizations were predicted by using the QSPR models constructed by
back-propagation (BP) neural networks. In the monomer pairs, monomer 1
is styrene, methyl methacrylate and acrylonitrile. The followed results indi-
cate that the atom charges, multipole moments and frontier molecular or-
bital energies are the most important factors in correlation with monomer
reactivity ratios. The produced artificial neural network (ANN) models are
proved to be accurate. For test sets, rms errors are 0.176 for Model S (mono-
mer 1: styrene), 0.268 for Model MM (monomer 1: methyl methacrylate)
and 0.278 for Model A (monomer 1: acrylonitrile). The results encourage
further applications of the proposed AAN models to other monomer pairs.

Collect. Czech. Chem. Commun. 2009, Vol. 74, No. 9, pp. 1279–1294

Radical Copolymerization of Vinyl Monomers 1293



The project was supported by the Scientific Research Fund of Hunan Provincial Education
Department (No. 07C205), the Scientific Research Fund of Hunan Institute of Engineering (No. 0761)
and the Natural Science Foundation of Hunan Province (No. 06JJ50017).

REFERENCES

1. Mayo F. R., Lewis F. M.: J. Am. Chem. Soc. 1944, 66, 1594.
2. Jenkins A. D., Jenkins J.: Macromol. Symp. 2001, 174, 187.
3. Alfrey T., Price C. C.: J. Polym. Sci. 1947, 2, 101.
4. Jenkins A. D.: J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 113.
5. Jenkins A. D., Jenkins J.: Macromol. Symp. 1996, 111, 159.
6. Karelson M., Lobanov V. S., Katritzky A. R.: Chem. Rev. 1996, 96, 1027.
7. Jenkins A. D., Hatada K., Kitayama T., Nishiura T.: J. Polym. Sci., Part A: Polym. Chem.
2000, 38, 4336.

8. Brandrup J., Immergut E. H., Grulke E. A. (Eds): Polymer Handbook, 4th ed. Wiley, New
York 1999.

9. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R.,
Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S.,
Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A.,
Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M.,
Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P.,
Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O.,
Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth
G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain
M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V.,
Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A.,
Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y.,
Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W.,
Gonzalez C., Pople J. A.: Gaussian 03, Revision B. 05. Gaussian Inc., Pittsburgh (PA)
2003.

10. Becke A. D.: J. Chem. Phys. 1993, 98, 5648.
11. Francl M. M., Pietro W. J., Hehre W. J., Binkley J. S., Gordon M. S., DeFrees D. J., Pople

J. A.: J. Chem. Phys. 1982, 77, 3654.
12. Cioslowski J.: J. Am. Chem. Soc. 1989, 111, 8333.
13. Fukui K.: Theory of Orientation and Stereoselection, p. 34. Springer, New York 1975.
14. Franke R.: Theoretical Drug Design Methods, p. 115. Elsevier, Amsterdam 1984.
15. Tang Q. Y., Feng M. G.: Practical Statistics and DPS Data Processing System. Science Press,

Beijing 2002.
16. Liu W. Q., Yi P. G., Tang Z. L.: QSAR Combinat. Sci. 2006, 25, 936.
17. Kikuchi O.: Quant. Struct.–Act. Relat. 1987, 6, 179.
18. Bodor N., Gabanyi Z., Wong C. K.: J. Am. Chem. Soc. 1989, 111, 3783.
19. Zhan C. G., Landry D. W., Ornstein R. L.: J. Am. Chem. Soc. 2000, 122, 1522.
20. Zhan C. G., Dixon D. A.: J. Phys. Chem. A 2002, 106, 10311.
21. Fueno T., Kamachi M.: Macromolecules 1988, 21, 908.
22. Rogers S. C., Mackrodt W. C., Davis T. P.: Polymer 1994, 35, 1258.

Collect. Czech. Chem. Commun. 2009, Vol. 74, No. 9, pp. 1279–1294

1294 Yu X., Yu W., Yi, Wang:


