Radical Copolymerization of Vinyl Monomers 1279

PREDICTION OF MONOMER REACTIVITY RATIOS IN
RADICAL COPOLYMERIZATION OF VINYL MONOMERS

Xinliang YU“!*, Wenhao YU?, Bing Y1*? and Xueye WANG¢

@ Department of Chemistry and Chemical Engineering, Hunan Institute of Engineering,
Xiangtan, Hunan 411104, China; e-mail: I yxl@hnie.edu.cn, 2 bingyi2004@126.com.cn
b School of Resources and Environmental Science, Wuhan University,
Wuhan, Hubei 430079, China; e-mail: xzm5602@sina.com.cn
¢ College of Chemistry, Xiangtan University,
Xiangtan, Hunan 411105, China; e-mail: wxueye@xtu.edu.cn

Received December 12, 2008
Accepted July 22, 2009
Published online September 3, 2009

Quantitative structure-property relationship (QSPR) models are developed to predict mono-
mer reactivity ratios (log ry,) in radical copolymerization with monomers M, (styrene,
methyl methacrylate and acrylonitrile) and M, (vinyl monomers). The quantum chemical
descriptors are calculated by the density functional theory (DFT) at B3LYP level of theory
with 6-31G(d) basis set. Stepwise multiple linear regression analysis and artificial neural net-
work (ANN) were used to generate Model S (monomer 1: styrene), Model MM (monomer 1:
methyl methacrylate) and Model A (monomer 1: acrylonitrile). Simulation results show that
the predicted log r,, values are in good agreement with the experimental data, with the test
sets possessing correlation coefficients of 0.972 for Model S, 0.933 for Model MM and 0.946
for Model A.

Keywords: Artificial neural network; Density functional theory; Radical copolymerization;
Monomer reactivity ratios; QSPR; Quantum chemical.

When a vinyl monomer M, is copolymerized with a second monomer M,,
the relationship between the composition of the initially formed copoly-
mer and the initial monomer mixture is given by?!

Rp = Rm(rlsz + l)/(l’21 + Rm) (1)

where R, is equal to [M,;]/[M,] in the monomer mixture and R, is equal to
[M,]/[M,] in the polymer formed, r;, and r,, are the monomer reactivity ra-
tios (known as reactivity ratios).

The monomer reactivity ratios, r;, and r,;, for any monomer pair are the
ratios of the rate constants of the different propagation reactions
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~M" + My - ~My° K1y
~M;" + My - ~My° Kip
~My" + My - ~My” Koy
~My" + My ~ ~My° k2o

with ry, = Ky1/Kqo, M1 = Kyo/Ksq, where ~M® represents a polymer chain end-
ing with a radical derived from monomer M.

One of the most important aspects of the study of copolymerization is
the relationship between the composition of the monomer feed and that of
the resulting copolymer. It would be extremely useful to predict the values
of r;, and r,; and hence the composition of any copolymer produced from
any pair of monomers at any concentration ratios?. The monomer reactiv-
ity ratios can be predicted using the empirical Q-e scheme?™® or the revised
patterns scheme?45. However, these schemes are limited as the parameter
values (Q, e, u, v) are not known.

The development of reliable quantitative structure—property relationship
(QSPR) models for prediction of the monomer reactivity ratios is of real in-
terest, particularly for new monomers for which experimental investigation
would be expensive. The QSPR approach can conserve resources and accel-
erate the process of development of new polymers®.

In principle, quantum chemical theory can provide precise quantita-
tive descriptors of molecular structures and their chemical properties®.
The goal of this paper is to produce robust QSPR models which could pre-
dict the monomer reactivity ratios log ry, in radical copolymerization
with monomers M; (styrene, methyl methacrylate and acrylonitrile) and
M, (C'H,=C?H-X and C*H,=C?X-Y). The quantum chemical descriptors cal-
culated by the DFT method are correlated with the monomer reactivity ra-
tios using the nonlinear artificial neural network (ANN) method.

MATERIALS AND METHODS

Table | shows three data sets for monomer reactivity ratios of radical
copolymerization of vinyl monomers with structures C*H,=C?H-X (or
C'H,=C2X-Y)"8. Monomer 1 is styrene, methyl methacrylate and acrylo-
nitrile. Monomers 2 show a high degree of structural variety. For example,
the functionalities present in the side chains include aldehydes, nitriles,
ketones, halides, esters, aromatic rings, non-aromatic rings, etc. The loga-
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rithms of monomer reactivity ratios ry, are used because the spread of
the data sets is consistently even when log ry, is used instead of ry,. More-
over, the logarithmic form of monomer reactivity ratios provides a more
convenient linear solution for the Q-e scheme?® and the revised patterns
scheme?45,

All experimental data of monomer reactivity ratios (see Table 1) were ran-
domly divided into a training set and a validation set. The training set was
used to build the QSPR model which was evaluated with the validation set.

All the model structures studied in this work were fully optimized by the
density functional theory (DFT) using Gaussian 03 program?® at B3LYP level
of theory with 6-31G(d) basis set'®!!, in order to obtain some quantum
chemical descriptors to fit monomer reactivity ratios. Frequency calcula-
tions were carried out with the optimized geometries to assure that they
were indeed stationary minima at the same level and basis set. Nineteen
descriptors were calculated — the Mulliken and atomic polar tensor (APT)12
charges of C!, C? and C? (attached to C? directly) (@,,.:» e+ ypees Upcts
d,.. and g,.;), mean positive APT atomic charge (qy*), total negative
APT atomic charge (gq;y7), mean negative Mulliken atomic charge with
hydrogens summed into heavy atoms (qy,”), total dipole moment (), mean
quadrupole moment (Q), mean octapole moment (w), energies of the high-
est occupied molecular orbital (Eome) and the lowest unoccupied molecu-
lar orbital (E ymo), LUMO and HOMO orbital energy difference (AE, =

ELumo — EH0M0)13’14-
The mean quadrupole moment is calculated using Eq. (2)

Qxx +QYY +sz
3

Q= (2)

where Qyx, Qvy and Qy, are the quadrupole moment tensors in the X-, Y-,
and Z-coordinates, respectively.
The mean octapole moment is defined as

- |wXX|+|('0YY| +|wZZ|
3 :

w

3

Similarly, wyyx, wyy and w,, are the octapole moment tensors in the X-, Y-
and Z-coordinates, respectively.

In addition, four descriptors (Rry, Rya: R .. and R,,) are defined as fol-
lows.
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TaBLE |
Experimental and calculated monomer reactivity ratios (log r;,)?

Monomer 12 Monomer 2 log ri,(exp)  log ry,(calc)  Alog rlzb
Model S (monomerl:styren) Training set

S Acrylaldehyde -0.658 -0.717 0.060
S Methylacrylaldehyde -0.699 -0.558 -0.141
S N-(Hydroxymethyl)acrylamide 0.190 0.200 -0.010
S Benzyl acrylate -0.284 -0.440 0.156
S Ethyl acrylate -0.102 -0.218 0.116
S Methyl acrylate -0.125 -0.140 0.015
S Acryloyl chloride -1.000 -0.973 -0.027
S Allyl acetate 1.875 1.832 0.043
S Diallyl phthalate 1.362 1.322 0.040
S Ethene 1.176 1.158 0.018
S Isopropenyl methyl ketone -0.357 -0.446 0.089
S Benzyl methacrylate -0.222 -0.301 0.079
S 2-Chloroethyl methacrylate -0.456 -0.511 0.055
S Glycidyl methacrylate -0.347 -0.334 -0.013
S Methyl methacrylate -0.301 -0.297 -0.004
S Phenyl methacrylate -0.602 -0.533 -0.069
S 2-Vinylpyridine -0.268 -0.278 0.011
S 4-Vinylpyridine -0.284 -0.375 0.091
S a-Methylstyrene 0.041 0.061 -0.020
S 4-Methylstyrene -0.050 -0.056 0.006
S Vinyl chloroacetate 1.477 1.508 -0.030
S Vinyl chloride 1.301 1.233 0.068
Model S (monomer 1:styrene) Test set

S Acrylamide 0.079 -0.017 0.096
S Butyl acrylate -0.102 -0.381 0.278
S Acrylonitrile -0.420 -0.518 0.098
S Allyl chloride 1.558 1.781 -0.223
S Isoprene -0.337 -0.027 -0.310
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TaBLE |
(Continued)

Monomer 12 Monomer 2 log ry,(exp)  log ryy(calc)  Alog rlzb
S Isobutyl methacrylate -0.268 -0.332 0.065
S 2-Hydroxyethyl methacrylate -0.276 -0.037 -0.239
S Methacrylonitrile -0.420 -0.325 -0.095
S 4-Acetoxy styrene -0.051 -0.047 -0.003
S Vinyl benzoate 1.519 1.480 0.038
S Vinylidene chloride 0.255 0.414 -0.159
Model MM (monomer 1:methyl methacrylate) Training set

MM Methylacrylaldehyde -1.000 -0.5365 -0.464
MM Benzyl acrylate 0.348 0.0303 0.318
MM Methyl acrylate 0.332 0.3821 -0.050
MM Allyl acetate 1.996 1.9219 0.074
MM Acrylamide 0.447 0.1883 0.259
MM Butyl acrylate 0.301 0.2159 0.085
MM Acrylonitrile 0.121 0.1309 -0.010
MM Allyl chloride 1.558 1.5251 0.033
MM Acryloyl chloride -0.347 -0.5263 0.179
MM Benzyl methacrylate -0.071 -0.1097 0.039
MM Glycidyl methacrylate -0.125 0.1879 -0.313
MM Methacrylonitrile -0.125 -0.2378 0.113
MM Styrene -0.337 -0.5798 0.243
MM Diallyl phthalate 1.362 1.3417 0.020
MM Isobutyl methacrylate -0.036 —-0.0506 0.015
MM 2-Vinylpyridine -0.420 -0.4094 -0.011
MM a-Methylstyrene -0.284 -0.2139 -0.070
MM 4-Vinylpyridine -0.260 -0.3302 0.070
MM Vinylidene chloride 0.342 0.2879 0.054
MM Vinyl chloride 0.954 0.9459 0.008
Model MM (monomer 1:methyl methacrylate) Test set

MM Isoprene -0.602 -0.0778 -0.524
MM 2-Chloroethyl methacrylate 0.063 -0.0321 0.095
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TaBLE |
(Continued)

Monomer 12 Monomer 2 log ri,(exp)  log ry,(calc)  Alog rlzb
MM Phenyl methacrylate -0.252 -0.4535 0.202
MM 4-Methylstyrene -0.462 -0.301 -0.161
MM Ethyl acrylate 0.301 0.3703 -0.069
MM 2-Hydroxyethyl methacrylate -0.125 0.1504 -0.275
MM Acrylaldehyde 0.079 0.2088 -0.130
MM Vinyl benzoate 1.307 1.6657 -0.359
Model A (monomer 1:acrylonitrile) Training set

A Acrylaldehyde -0.222 -0.172 -0.050
A Benzyl acrylate 0.176 -0.155 0.331
A Butyl acrylate 0.079 0.070 0.009
A Acryloyl chloride 0.079 0.023 0.056
A Allyl acetate 0.818 0.644 0.174
A Allyl chloride 0.431 0.630 -0.199
A Ethene 0.845 0.760 0.085
A 2-Chloroethyl methacrylate -0.854 -0.840 -0.014
A Glycidyl methacrylate -0.854 -0.801 -0.053
A 2-Hydroxyethyl methacrylate -0.699 -0.693 -0.006
A Methacrylonitrile -0.367 -0.487 0.120
A Isopropenyl methyl ketone -0.420 -0.617 0.197
A 2-Vinylpyridine -1.097 -1.257 0.160
A 4-Vinylpyridine -1.000 -1.020 0.020
A Vinylidene chloride -0.222 -0.229 0.007
A Isoprene -1.523 -1.419 -0.104
A Methylacrylaldehyde -0.824 -0.515 -0.309
A Acrylamide -0.046 0.013 -0.059
A Ethyl acrylate -0.155 0.010 -0.165
A Methyl acrylate -0.071 -0.179 0.108
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TaBLE |
(Continued)

Monomer 12 Monomer 2 log ry,(exp) log ry,(calc) Alog rlzb
Model A (monomer l:acrylonitrile) Test set

A Benzyl methacrylate -0.699 -0.742 0.043
A Diallyl phthalate 0.544 0.767 -0.223
A Methyl methacrylate -0.854 -0.869 0.015
A Phenyl methacrylate -0.444 -0.725 0.281
A 4-Acetoxystyrene -1.155 -1.476 0.321
A 4-Methylstyrene -1.301 -1.507 0.206
A Styrene -1.398 -1.505 0.107
A Vinyl chloride 0.477 0.014 0.463
A a-Methylstyrene -1.398 -1.481 0.083
A N-(Hydroxymethyl)acrylamide -0.097 0.418 -0.515
Model A (monomer l:acrylonitrile) Prediction set

A 3-Bromostyrene - -1.503 -

A 3-Chlorostyrene - -1.174 -

A 3-Nitrostyrene - 0.582 -

A 4-Bromostyrene - -1.504 -

A 4-Cyanostyrene - 0.664 -

A 4-Methoxystyrene - -1.503 -

A 2,3,4,5,6-Pentachlorostyrene - -1.172 -

A 4-Fluoro-2-(trifluoromethyl)styrene - -1.490 -

A 2,6-Dichlorostyrene - -1.327 -

A 2-Bromo-4-(trifluoromethyl)styrene - -1.394 -

A 4-lsopropylstyrene - -1.517 -

a3g, styrene; MM, methyl methacrylate; A, acrylonitrile. b Alog ry, = log ry,(exp) - log ry,(calc).
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Rm = a 4)
qmc3
q,,.s

Ruva = Mf (5)
A
W

R ,= (6)
o qMc2

Ry = W)
EHOMO

Stepwise multiple linear regression (MLR) analysis'® has proved to be an
extremely useful computational technique in seeking an optimum linear
combination of variables from the subsets of the N variables. The technique
only adds one parameter to a model at a time and always in the order from
the most significant to the least significant. Thus, stepwise MLR method
was used to select their respective best subsets of descriptors for Model S
(monomer 1: styrene), Model MM (monomer 1: methyl methacrylate) and
Model A (monomer 1: acrylonitrile) from the 19 descriptors mentioned
above. The subset size was increased until addition of another descriptor
did not significantly improve the root-mean-square (rms) error of the esti-
mate. Furthermore, a variance inflation factor (VIF) was calculated to see if
multicollinearities exist between the descriptors in a model. Models were
not accepted if they contained descriptors with VIFs over a value of 10. The
smallest subset of descriptors that did not compromise the rms error of the
estimate and VIF-test was identified as optimal.

All experimental data in Table | were divided into a training set and a test
set, respectively. In order to develop the respective artificial neural network
(ANN) models from the training sets, three-layer, fully connected, back-
propagation (BP) neural networks were adopted®. For each model, the
number of neurons of the input layer was equal to the molecular de-
scriptors taken from stepwise MLR analysis. The output layer contained one
neuron representing the reactivity ratios (log r;,). The network geometry
(i.e. the number of hidden layers and the number of nodes in per hidden
layer) was optimized by the trial-and-error method with permission error
0.0001, momentum parameter 0.6 and sigmoid parameter 0.9. The optimal
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number of hidden layers and the number of neurons in each hidden layer
were determined by varying the number of hidden layers (from 1 to 2) and
the number of hidden neurons (from 1 to 4) and observing rms errors. The
sums of rms errors of the training set and the test set were used to assess the
accuracy of a model. The rms error was defined as

ims = |2 i =x)" @)

N

where f; is the predicted value for the i-th compound, x; is the observed
value for the i-th compound, and N is the total number of compounds in
the data set. The number of hidden layers and the number of nodes in per
hidden layer were increased successfully until improvement was observed
for that model.

The ANN architecture is described with the code: N;,—[Np1—Np2le—Nout
where N;, and N, are the element numbers of input and output nodes, re-
spectively; N,; and N;,, are numbers of nodes in the first and second hid-
den, respectively; e is the number of hidden layers.

RESULTS AND DISCUSSION

Correlating 19 descriptors and the three sets of monomer reactivity ratios
using stepwise multiple linear regression (MLR) analysis!®, three MLR mod-
els were obtained — Model S (monomer 1: styrene), Model MM (monomer 1:
methyl methacrylate) and Model A (monomer 1: acrylonitrile).

log r;, = 1.064 + 0.011Q + 20.276E, yyo — 1.743q,,.. — 0.537q;" 9

n =33, R =0.952, se = 0.253, F = 67.073 (MLR Model S)

log r;, = 0.761 + 13.776E, o — 1.6960y~ + 0.020R7y, — 0.201Ry,,  (10)

n =28, R =0.936, se = 0.264, F = 40.725 (MLR Model MM)

log ry, = -5.668 - 0.028w - 0.003R __. — 0.077R,;; + 21.585AE (11)
n =30, R =0.925, se = 0.291, F = 32.270 (MLR Model A)

where R is correlation coefficient, se is the standard error, F is the Fischer
ratio, and n is the number of samples. The characteristics of descriptors
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appearing in each model are shown in Table Il and the definitions of

descriptors are described in Table IlI.

All the subsets of descriptors selected by stepwise MLR method were then
fed to artificial neural network (ANN) as input vectors!®>. The optimal con-
ditions of neural networks were obtained by adjusting parameters by the
trial-and-error method. The architectures of the final optimum ANNSs are
4-[4];-1 for Model S (monomer 1: styrene), 4-[4-2],-1 for Model MM
(monomer 1: methyl methacrylate) and 4-[4],-1 for Model A (monomer 1:

acrylonitrile).

Statistical parameters for ANN Model S are
n =22, R =0.997, rms = 0.068 (training set),

n=11, R=0.972, rms = 0.176 (test set).

Statistical parameters for ANN Model MM are
n =20, R =0.971, rms = 0.175 (training set),

n =38, R =0.933, rms = 0.268 (test set).

TasLE Il

The characteristics of descriptors appearing in MLR models?

Model? Descriptor  Coefficient Std. error Sig.-test t-test VIF
Model S constant 1.064 0.141 0.000 7.541 -
Q 0.011 0.004 0.007 2.927 2.408
ELumo 20.276 2.410 0.000 8.413 1.209
Amcs3 -1.743 0.144 0.000 -12.134 1.090
a7 -0.537 0.078 0.000 -6.859 2.630
Model MM constant 0.761 0.133 0.000 5.829 -
EL.umo 13.7761 3.063 0.000 4.719 1.302
v -1.718 0.432 0.001 -4.125 1.282
Rim 0.020 0.005 0.000 4.263 1.153
Rma -0.201 0.027 0.000 -7.627 1.171
Model A constant -5.668 0.513 0.000 -11.042 -
w -0.028 0.010 0.011 -2.763 1.475
Rc2 -0.003 0.001 0.000 -6.124 1.201
R“H -0.077 0.015 0.000 -5.249 1.353
AE, 21.585 2.166 0.000 9.966 1.099

]

as, styrene; MM, methyl methacrylate; A, acrylonitrile.
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Statistical parameters for ANN Model A are
n =20, R =0.972, rms = 0.146 (training set),

n =10, R =0.946, rms = 0.278 (test set).

The results calculated by each ANN method are listed in Table | and de-
picted in Fig. 1, respectively. They indicate that all the experimental mono-
mer reactivity ratios values are close to the predicted values. Thus the three
ANN models are useful for predicting monomer reactivity ratios in binary
copolymerization with monomers M; (styrene, methyl methacrylate and
acrylonitrile). Furthermore, the ANN Model A is used to predict the reactiv-
ity ratios for 11 monomer pairs (monomer 1: acrylonitrile, monomer 2:
11 styrenes) whose experimental values are not available. The prediction
values are also listed in Table I.

Table Il shows all the Sig.-test values are lower than 0.05, demonstrating
that these descriptors all are significant. In addition, all the VIF (variance
inflation factor) values are lower than 10, which show that multicollinear-
ities do not exist in the descriptors in each model. The t-test measures the
statistical significance of the regression coefficients. The higher t-test values
correspond to the relatively more significant regression coefficients.

TABLE 11
The definitions of descriptors

Number Descriptor Definition Unit
1 Q mean molecular quadrupole moment DA
2 E, umo energy of the lowest unoccupied molecular orbital a.u.
3 Oucs3 Mulliken charge on c a.u.
4 Or total negative APT atomic charge a.u.

mean negative Mulliken atomic charge with
hydrogens summed into heavy atoms

6 Rim ratio d; /dyc3 -
7 R ratio q,,c¥ay, (Means positive APT atomic charge B
MA in a molecule
8 W mean molecular octapole moment D A?
Roc? ratio w/qy,c2(Mulliken charge on C?) D A%2au.™?
10 R“H ratio p ('_[he total dlpple moment)/EHOMo (the energy D au-!
of the highest occupied molecular orbital)

11 AE LUMO and HOMO orbital energy gap a.u.
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Plots of the experimental versus calculated monomer reactivity ratios (log r;,); monomer 1:
styrene (a), methyl methacrylate (b) and acrylonitrile (c)
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According to the Q—e scheme?®, the rate constant for a radical monomer
reaction, for example, for the reaction of a radical M; with a monomer M,,
can be written as

k, = PQ, exp(-e,e,) (12)

and

logk, =logP, —e,e, +logQ, (13)

where P; and Q, are measures of the resonance stabilization of M; and M,
respectively; e; and e, are measures of their respective polarities.

By subtracting the corresponding expression for k;; from both sides of
the equations, the parallel equations for the monomer reactivity ratio ry,
are obtained

P
12 =+ TC\& TR0 14
r 0, exp[-e,(e; —e,)] (14)

Thus
logr,, =logP, -logQ, +e,e, —e,’. (15)

In this paper, monomer 1 is styrene, methyl methacrylate and acrylo-
nitrile, i.e. P; and e; are constant. Hence, the monomer reactivity ratios r;,
depend only on the parameters Q, and e,. The parameter log r,, increases
with increasing polarity or/and decreasing general reactivity of monomer 2.

The negative Q can reflect the degree of the asymmetry of spherical
charge distribution in the molecule. The decrease in Q value indicates the
increase in polarity of the molecule. Thus, the descriptor Q carries a nega-
tive coefficient in the Model S (see Table Il). The correlation of the molecu-
lar w with Q is negative. It is easy to understand why the descriptor w bears
a positive coefficient in Model MM.

The total dipole moment is a measure of the asymmetry of molecular
charge distribution. It is also the most widely used quantity for description
of the polarity of a molecule!’8. Therefore, the ratio of pu and Eyomo, Ryms
correlates with the parameter log ry,.

According to the frontier molecular orbital theory (FMO) of chemical re-
activity, the highest occupied molecular orbital (HOMO), the lowest unoc-
cupied molecular orbital (LUMO) and the energy gap (AEy) between LUMO
and HOMO play major roles in controlling many chemical reactions!314,
The energy of the LUMO (E o) is directly related to the electron affinity.

Collect. Czech. Chem. Commun. 2009, Vol. 74, No. 9, pp. 1279-1294
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It characterizes the susceptibility of the molecule toward attack by nucleo-
philes. A molecule with a smaller E ,,o Value may be prone to formation
of a radical and resulting in a larger value of parameter Q,. Thus, there
are positive terms associated with descriptors E, ;o and AE; in Model S,
Model MM and Model A (see Table I1).

In Table II, six descriptors (d,,.:, Gt du > Rrm: Rma @nd R _.) correlate
with local electron densities or charges. By the classical chemical theory, all
chemical interactions are either electrostatic (polar) or orbital (covalent).
Electric charges in the molecule are obviously the driving force of electro-
static interactions. Indeed, it has been proven that local electron densities
or charges are important in many chemical reactions and for physico-
chemical properties of compounds, and can reflect the polarity of a mole-
culeb. The six descriptors therefore correlate also with the parameter log r,.

Despite many different factors affecting the monomer reactivity ratios
(log r;5), the molecular structures of monomers are the main ones. These
descriptors based on the structural analysis of monomers express the im-
portant factors relating to monomer reactivity ratios. In addition, ANN is
a powerful chemometrics tool to make quantitative prediction. Therefore,
the ANN models based on the reasonable descriptors can accurately predict
the reactivity ratios.

According to transition state theory, the reaction rate constant k for a
given temperature T can be evaluated as

k = (KkgT/h) exp (-A*GO,/RT) (16)

where A*G®, is the Gibbs free energy of activation, kg is the Boltzmann con-
stant, h is the Planck constant, k is the tunneling correction, and R is the
gas constant. By using Eq. (16) for the rate constants k;, and k;,, a more de-
tailed expression of the reactivity ratio log r,, is obtained (we assume that
the k and T values are the same).

log ry, = A*GO;, — A*GO;; a7

To use Eq. (17) to calculate the log r;, value of a monomer pair, one needs
to determine the Gibbs free energy of activation for the reaction of the
monomer with a radical. However, the reliable computational determina-
tion of a Gibbs free energy of activation is significantly more expensive
than that of a reaction energy!®?°. Fortunately, the computation can be
simplified because there are excellent linear relationships between the acti-
vation energy and reaction energy?®?2. Hence, if we consider monomer
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pairs (monomer 1: styrene, methyl methacrylate and acrylonitrile), we may
obtain an alternative expression of the reactivity ratio log ry,

log ry, = AAG,, + C (18)

where AG,;, is the Gibbs free energy of reaction, and A and C are empirical
constants to be determined by comparison to experimentally derived log ry,
values.

Here we take the 20 monomer pairs in the training set of Model A (mono-
mer 1: acrylonitrile) (see Table I) as calculation example. According to the
terminal model, the Gibbs free energy of reaction AG,;, can be calculated
with the propagation reaction

CH5CH(CN)" + M, - CH;CH(CN)M,"

where M, represents 20 different monomers (i.e. monomer 2) (see Table I).
All optimizations and frequency calculations were carried out at the B3LYP
level of theory with 6-31G(d) basis set. In the end, we obtained a relationship
between the reactivity ratio log r;, and reaction energy AG,;, (Hartrees)

log ry, = -0.186AG,,, + 48.250 (19)

with a correlation coefficient R = 0.639, which is lower than that of Eq. (11).
Equation (19) is only approximate. The reason may be that the reactivity of
a propagating radical is determined not only by the terminal unit but also
by the penultimate unit. Hence, it is necessary to develop these ANN mod-
els to predict the reactivity ratio log ry,.

CONCLUSIONS

The monomer reactivity ratios (log r;,) values of vinyl monomers in radical
copolymerizations were predicted by using the QSPR models constructed by
back-propagation (BP) neural networks. In the monomer pairs, monomer 1
is styrene, methyl methacrylate and acrylonitrile. The followed results indi-
cate that the atom charges, multipole moments and frontier molecular or-
bital energies are the most important factors in correlation with monomer
reactivity ratios. The produced artificial neural network (ANN) models are
proved to be accurate. For test sets, rms errors are 0.176 for Model S (mono-
mer 1: styrene), 0.268 for Model MM (monomer 1: methyl methacrylate)
and 0.278 for Model A (monomer 1: acrylonitrile). The results encourage
further applications of the proposed AAN models to other monomer pairs.
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